
Stats4Astro 2017

MCMC Computer Lab

This lab will focus on writing MCMC samplers for high energy spectral analysis. This will largely
involve writing code for the samplers described in the notes. We will use a number of simulated
data sets rather than real data to avoid technical difficulties that would arise in fully accounting
for the actual data generation mechanisms. The simulated data sets are among the files provided
for the course. The following Table lists the simulated data sets and calibration products that you
will need to complete this lab.

file name columns description

spectral-1.txt Energy, Count a basic spectral data set
spectral-2.txt Energy, Count a low-count spectral data set
spectral-3.txt Energy, Count a spectral data set with an emission line

(Not provided, see below.)
spectral-4.txt Energy, Count a spectral data set that includes absorption,

effective area, and background
eff-area.txt Energy, Effective Area an effective area curve

Each of the spectral data sets is a simulated high-energy spectrum and consist of photon counts
from a number of energy bins. The first column reports the mean energy (keV) of each bin and
the second the photon count. I refer to the mean energy in bin i as Ei and the count in bin i as
Yi for i = 1, . . . , n. The energy range for the first three simulated spectra is [1.905, 10.730] and the
energy range for the fourth is [1.905, 7.365].

We model the photon counts as independent Poisson random variables, Yi
indep∼ Poisson(Λi), where

Λi is the expected photon count in bin i and is constrained according to a parameterized model.
Three parametrized models will be considered. In Model 1 Λi follows a simple powerlaw, i.e.,

Model 1 : Λi(θ1) = αE−β
i ,

where θ1 = (α, β) is a model parameter of direct scientific interest.

In Model 2, we add a spectral line to Model 1.

Model 2 : Λi(θ2) = αE−β
i + γI{i ∈ L(δ)},

where I{i ∈ L(δ)} is an indicator function that is one if i is contained in the set L(δ) and zero
otherwise, L(δ) = {δ − 1, δ, δ + 1} for ω = 1, . . . , n, and θ2 = (α, β, γ, δ) is a parameter of scientific
interest. Thus, the spectral line adds a constant γ to the powerlaw in each of three adjacent bins
and the location of the spectral line in indexed by δ.

In Model 3, we add absorption, effective area and background contamination to Model 1, but
do not include the spectral line.:

Model 3 : Λi(θ3) = (αE−β
i + κ) · e−ω/Ei ·A(Ei)
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where κ models the background intensity, e−ω/Ei is the probability of a photon not being absorbed
and A(Ei) represents the effective area. Here θ2 = (α, β, κ, ω) is a parameters of scientific interest.

When fitting these models you may use flat priors on all parameters.

1. Write code for a Random Walk Metropolis sampler to fit Model 1 to spectral-1.txt.
What do you consider when you select your jumping rule? How efficiently does your sampler
explore the posterior distribution?

Solution:

runMetropolis <- function(spec, draw.num=10000, start.vals, jump.var){

E = spec[,1]; Y = spec[,2]

Draws = matrix(NA, draw.num, 2)

Draws[1,1] = start.vals[1]; Draws[1,2] = start.vals[2];

accept = 0

log.lkhd = function( y=Y,x=E,alpha,beta ) ##up to a normalizing constant

return( log(alpha)*sum(y) - beta*sum( y*log(x) ) - alpha*sum( x^(-beta) ) )

### Prior for alpha and beta:: uniform on [0, 100]

cat("Iteration: 1")

for(i in 2:draw.num)

{

draw.star = rmvnorm( 1,mean=Draws[i-1,],sigma=jump.var*diag(c(1500,1)) )

if(draw.star[1]<=0||draw.star[1]>=100||draw.star[2]<=0||draw.star[2]>=100){

Draws[i,] = Draws[i-1,]

}else{

log.ratio = log.lkhd(alpha=draw.star[1],beta=draw.star[2] )-

log.lkhd(alpha=Draws[i-1,1],beta=Draws[i-1,2] )

ratio = exp( min(log.ratio,100) )

temp = runif(1)

if(temp < min(ratio,1) ){

Draws[i,] = draw.star

accept = accept + 1

}else{

Draws[i,] = Draws[i-1,]

}

}

if(i %% 1000 == 0) cat(", ",i)

}

output <- list(Draws,accept/draw.num)

names(output) <- c("Draws","accept.ratio")

return(output)

}
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# loading some necessary packages; use install.packages() if not done previously

library(mvtnorm)

library(coda)

# reading in the spectrum and running the Random Walk Metropolis sampler

spec1 <- read.table("data/spectral-1.txt",header=TRUE )

p1 <- runMetropolis(spec = spec1, start.vals=c(25,1,5),jump.var=0.035^2)

## some plotting routines and examining the results

par(mfrow=c(2,1))

plot(p1$Draws[,1],xlab="iteration",ylab=expression(alpha),type="l",main="MCMC trace plots")

plot(p1$Draws[,2],xlab="iteration",ylab=expression(beta),type="l")

par(mfrow=c(1,2))

acf(p1$Draws[,1],main="Autocorrelation for alpha",lag.max=100)

acf(p1$Draws[,2],main="Autocorrelation for beta",lag.max=100)

print(p1$accept.ratio)

print(effectiveSize(p1$Draws))
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We find that the acceptance rate for the Random Walk Metropolis sampler with the chosen
jumping rule is about 36%, which is in the target range of 20% to 40%. There is somewhat
high autocorrelation, and the effective sample size is about 160 to 180 for both α and β.

2. Write code for an Independence Sampler to fit Model 1 to spectral-1.txt. Construct
your jumping rule by using the R command GLM to derive an approximation to the posterior
distribution. How efficiently does your sampler explore the posterior distribution?
GLM hint: You can fit the model with GLM using
glm.fit <- glm( Count ∼ I(-log(Energy)),family=poisson(link="log"))
You can save the fitted values of (α, β) into fit with
fit <- c(exp(glm.fit$coef[1]), glm.fit$coef[2])
and compute the asymptotic variance-covariance matrix via the delta method with
vmat <- diag(c(fit[1],1))%*%vcov(glm.fit)%*%diag(c(fit[1],1)).

Solution:

runIndep <- function(spec,draw.num=10000){

E = spec[,1]; Y = spec[,2]

draw.num = 10000;

accept = 0;

Draws = matrix(NA, draw.num, 2)

log.lkhd = function( y=Y,x=E,alpha,beta ) ##up to a normalizing constant

return( log(alpha)*sum(y) - beta*sum( y*log(x) ) - alpha*sum( x^(-beta) ) )

glm.fit = glm( Y~I(-log(E)),family=poisson( link="log" ) )

fit <- c( exp( glm.fit$coef[1] ), glm.fit$coef[2] )

vmat <- diag( c(fit[1],1) ) %*% vcov(glm.fit) %*% diag( c(fit[1],1) )

Draws[1,] = fit

## Prior for alpha and beta:: uniform on [0, 100]
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cat("Iteration: 1")

for(i in 2:draw.num)

{

draw.star = rmvnorm( 1, mean=fit, sigma=vmat )

log.ratio = ( log.lkhd(alpha=draw.star[1],beta=draw.star[2] )-

log.lkhd(alpha=Draws[i-1,1],beta=Draws[i-1,2] ) )-

( log(dmvnorm(draw.star,mean=fit,sigma=vmat ) )-

log(dmvnorm(Draws[i-1,],mean=fit,sigma=vmat ) ) )

ratio = exp( min(log.ratio,100) )

temp = runif(1)

if(temp < min(ratio,1) ){

Draws[i,] = draw.star

accept = accept + 1

}else{

Draws[i,] = Draws[i-1,]

}

if(i %% 1000 == 0) cat(", ",i)

}

output <- list(Draws,accept/draw.num)

names(output) <- c("Draws","accept.ratio")

return(output)

}

p2Draws <- runIndep(spec = spec1)

p2 <- runIndep(spec = spec1)

## some plotting routines and examining the results

par(mfrow=c(2,1))

plot(p2$Draws[,1],xlab="iteration",ylab=expression(alpha),type="l")

plot(p2$Draws[,2],xlab="iteration",ylab=expression(beta),type="l")

par(mfrow=c(1,2))

acf(p2$Draws[,1],main="Autocorrelation for alpha",lag.max=100)

acf(p2$Draws[,2],main="Autocorrelation for beta",lag.max=100)

print(p2$accept.ratio)

print(effectiveSize(p2$Draws))
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We find that the acceptance rate for the Independence Sampler is about 94%, with very low
autocorrelation. The effective sample size is around 6000-8000 for α and β. This sampler is
efficiently exploring the posterior distribution.

3. Run the Random Walk Metropolis sampler and the Independence Sampler that you derived
in parts 1 and 2 to fit Model 1 to spectral-2.txt. How does the convergence behavior
compare with the two data sets? You may want to reconsider the jumping rules that you
settled on in parts 1 and 2 to design a more robust pair of samplers.

Solution:

spec2 <- read.table("data/spectral-2.txt",header=TRUE )

# Running with Metropolis sampler.

# Note that we’re adjusting the jumping rule to obtain a more efficient sampler

# compared to that with the previous jumping rule.

p3_Metrop <- runMetropolis(spec=spec2,start.vals=c(4,1.5),jump.var=0.1^2)

par(mfrow=c(2,1))

plot(p3_Metrop$Draws[,1],xlab="iteration",ylab=expression(alpha),type="l")

plot(p3_Metrop$Draws[,2],xlab="iteration",ylab=expression(beta),type="l")

par(mfrow=c(1,2))

acf(p3_Metrop$Draws[,1],main="Autocorrelation for alpha",lag.max=100)

acf(p3_Metrop$Draws[,2],main="Autocorrelation for beta",lag.max=100)

print(p3_Metrop$accept.ratio)

print(effectiveSize(p3_Metrop$Draws))

The convergence behavior for the second data set is clearly poorer compared to the first data
set. For the second, the acceptance rate with the adjusted jumping rule is about 8%, there is
high autocorrelation, and the effective sample size is about than 80 to 120 for each parameter.
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# Running with Independence Sampler

p3_Indep <- runIndep(spec=spec2)

par(mfrow=c(2,1))

plot(p3_Indep$Draws[,1],xlab="iteration",ylab=expression(alpha),type="l")

plot(p3_Indep$Draws[,2],xlab="iteration",ylab=expression(beta),type="l")

par(mfrow=c(1,2))

acf(p3_Indep$Draws[,1],main="Autocorrelation for alpha",lag.max=100)

acf(p3_Indep$Draws[,2],main="Autocorrelation for beta",lag.max=100)

print(p3_Indep$accept.ratio)

print(effectiveSize(p3_Indep$Draws))
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We also find poorer performance with the Independence Sampler when using the second data
set compared to the first data set. Here, the acceptance ratio is about 80%, the effective
sample size is in the range of 1000 to 2000 for each parameter, and the autocorrelation is
higher than we found previously.

4. Write code for a new MCMC sampler that switches between your best Random Walk Metropo-
lis sampler and your best Independence Sampler at each iteration. That is, write a sampler
that uses the Random Walk Metropolis update in even numbered iterations and the Inde-
pendence Sampler in odd numbered iterations. Run this mixed sampler to fit Model 1 to
each of spectral-1.txt and spectral-2.txt. How does the mixed sampler compare with
the samplers your derived in ran in parts 1, 2, and 3?

Solution:

runMixed <- function(spec,draw.num=10000,jump.var){

E = spec[,1]; Y = spec[,2]

accept = 0;

Draws = matrix(NA, draw.num, 2)

log.lkhd = function( y=Y,x=E,alpha,beta ) ##up to a normalizing constant

return( log(alpha)*sum(y) - beta*sum( y*log(x) ) - alpha*sum( x^(-beta) ) )

glm.fit = glm( Y~I(-log(E)),family=poisson( link="log" ) )

fit <- c( exp( glm.fit$coef[1] ), glm.fit$coef[2] )

vmat <- diag( c(fit[1],1) ) %*% vcov(glm.fit) %*% diag( c(fit[1],1) )

Draws[1,] = fit

## Prior for alpha and beta:: uniform on [0, 100]

cat("Iteration: 1")
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for(i in 2:draw.num)

{

if(i%%2==0){

draw.star = rmvnorm( 1,mean=Draws[i-1,],sigma=jump.var*diag(c(1500,1)) )

if(draw.star[1]<=0||draw.star[1]>=100||draw.star[2]<=0||draw.star[2]>=100){

Draws[i,] = Draws[i-1,]

}else{

log.ratio = log.lkhd(alpha=draw.star[1],beta=draw.star[2] )-

log.lkhd(alpha=Draws[i-1,1],beta=Draws[i-1,2] )

ratio = exp( min(log.ratio,100) )

temp = runif(1)

if(temp < min(ratio,1) ){

Draws[i,] = draw.star

accept = accept + 1

}else{

Draws[i,] = Draws[i-1,]

}

}

}else{

draw.star = rmvnorm( 1, mean=fit, sigma=vmat )

log.ratio = ( log.lkhd(alpha=draw.star[1],beta=draw.star[2] )-

log.lkhd(alpha=Draws[i-1,1],beta=Draws[i-1,2] ) )-

( log(dmvnorm(draw.star,mean=fit,sigma=vmat ) )-

log(dmvnorm(Draws[i-1,],mean=fit,sigma=vmat ) ) )

ratio = exp( min(log.ratio,100) )

temp = runif(1)

if(temp < min(ratio,1) ){

Draws[i,] = draw.star

accept = accept + 1

}else{

Draws[i,] = Draws[i-1,]

}

}

if(i %% 1000 == 0) cat(", ",i)

}

output <- list(Draws,accept/draw.num)

names(output) <- c("Draws","accept.ratio")

return(output)

}

p4_spec1 <- runMixed(spec=spec1,jump.var=0.035^2)

par(mfrow=c(2,1))

plot(p4_spec1$Draws[,1],xlab="iteration",ylab=expression(alpha),type="l")

plot(p4_spec1$Draws[,2],xlab="iteration",ylab=expression(beta),type="l")

par(mfrow=c(1,2))

acf(p4_spec1$Draws[,1],main="Autocorrelation for alpha",lag.max=100)

acf(p4_spec1$Draws[,2],main="Autocorrelation for beta",lag.max=100)
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print(p4_spec1$accept.ratio)

print(effectiveSize(p4_spec1$Draws))
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p4_spec2 <- runMixed(spec=spec2,jump.var=0.1^2)

par(mfrow=c(2,1))

plot(p4_spec2$Draws[,1],xlab="iteration",ylab=expression(alpha),type="l")

plot(p4_spec2$Draws[,2],xlab="iteration",ylab=expression(beta),type="l")

par(mfrow=c(1,2))

acf(p4_spec2$Draws[,1],main="Autocorrelation for alpha",lag.max=100)

acf(p4_spec2$Draws[,2],main="Autocorrelation for beta",lag.max=100)

print(p4_spec2$accept.ratio)

print(effectiveSize(p4_spec2$Draws))
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The mixed sampler tends to perform somewhere in between the performance of the Random
Walk Metropolis Sampler and the Independence Sampler.

5. Based on your findings in parts 1–4. Write an efficient sampler to fit Model 3 to the dataset
spectral-4.txt. You may want to use the method of Data Augmentation to handle the
background contamination.

Solution:

arf = read.table("data/eff-area.txt",header=T)

spec4 <- read.table("data/spectral-4.txt",header=TRUE )

E = spec4[,1]; Y = spec4[,2];

draw.num = 100000

Draws = matrix(NA, draw.num, 4)

Draws[1,] = c(50, 1.69, 1, 1)

k = 0.04^2; # may need to adjust for more efficient sampling...

accept = 0;

Y.back = Y;

log.lkhd = function( y.source,x=E,alpha,beta,omega ) ##up to a normalizing constant

{
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return( log(alpha)*sum(y.source) - beta*sum( y.source*log(x) ) -

omega*sum( y.source/x ) - alpha*sum( x^(-beta)*exp(-omega/x)*arf[,2]/100 ) )

}

cat("Iteration: 1")

for(i in 2:draw.num)

{

#### Draw Y_back

Y.back = rbinom( length(Y), Y, Draws[i-1,4] / ( Draws[i-1,1]*E^(-Draws[i-1,2])*

exp(-Draws[i-1,3]/E)*arf[,2]/100 + Draws[i-1,4] ) )

Draws[i,4] = rgamma(1, shape=(sum(Y.back)+1), scale=1/length(Y) )

draw.star = rmvnorm( 1,mean=Draws[i-1,1:3],sigma=k*diag(c(2000,1,10) ) )

if(draw.star[1]<=0||draw.star[1]>=100||draw.star[2]

<=0||draw.star[2]>=100||draw.star[3]<=0||draw.star[3]>=100){

Draws[i,1:3] = Draws[i-1,1:3]

}else{

log.ratio = log.lkhd(Y-Y.back,E,draw.star[1],draw.star[2],draw.star[3] )-

log.lkhd(Y-Y.back,E,Draws[i-1,1],Draws[i-1,2],Draws[i-1,3] )

ratio = exp( min(log.ratio,100) )

temp = runif(1)

if(temp < min(ratio,1) ){

Draws[i,1:3] = draw.star

accept = accept + 1

}else{

Draws[i,1:3] = Draws[i-1,1:3]

}

}

if(i == 2) cat("Iteration: ")

if(i %% 5000 == 0) cat(", ",i)

}

6. Bonus: Add five counts to Counts[200], Counts[201], and Counts[202] in spectral-1.txt.
Call the new file spectral-3.txt. Now write an MCMC sampler to fit Model 2 to spectral-3.txt.
Use the strategy outlined in the notes to fit the model using Data Augmentation and Metropo-
lis within Gibbs. You might try repeating your run with a weaker or stronger line, or with
the low-count spectral model in spectral-2.txt.

Solution: See slides for an outline of the solution.
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