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Model Building Lab

This lab will focus on writing MCMC samplers that account for selection effects. This prob-
lem is a simplified version of a cosmological techniques that uses Type Ia super novae (SNIa) as
standard(izable) candles in the estimation of cosmological parameters that describe the expansion
history of the universe. Again we use simulated data sets rather than real data to avoid technical
difficulties that arise in fully accounting for the actual data generation mechanisms. Simulations
and model fitting are based on the Λ-CDM model (using Ωm = 0.3, Ωκ = 0, H0 = 67.3 km/s/Mpc)
which is provided in tabulated form.

file name columns description

Lambda-CDM.txt z = redshift, µ(z) = distance modulus Λ-CDM model as a function of z

Suppose the distribution of the absolute magnitude of SNIa follow a normal distribuiton,

Mi ∼ Norm(µ, σ2),

where Mi represents absolute magnitude of SNIa i, µ is the mean absolute magnitude, and σ2 is
the variance of the absolute magnitudes of SNIa. We are interested in estimating µ and σ2 via a
Bayesian analysis, using independent prior distributions on µ and σ2: µ ∼ Norm(−19.3, 202) and
σ2 ∼ β2/χ2

ν , with β2 = ν = 0.02.

Unfortunately, we do not observe the absolute magnitudes, but rather observe the apparent mag-
nitudes

mi = µ(zi) +Mi,

where zi is the observed redshift of SNIa. Values of µ(zi) are given in Lambda-CDM.txt. These values
assume Ωm = 0.3, Ωκ = 0, and H0 = 67.3 km/s/Mpc; we take these values as given throughout
this exercise. Suppose, owing to instrumental constraints we only observe SNIa with mi < 24.

For given true values of µ and σ2 we can simulate a set of redshifts as well as absolute and apparent
magnitudes for a hypothetical set of SNIa. Let µtrue and σ2true represent these true values. We
set µtrue = −19.3 throughout, but consider how the value of σ2true effect our results by varying its
value.

Consider a set of n SNIa and let N be the subset of these with mi < 24. Our observed dataset
will be of size N . For given values of n and σ2true the R-code in Table 1 can be used to simulate a
dataset. (This code assumes that the redshifts of SNIa are distributed with density ∝ (1 + zi)

2.)
The output from the R-code is summarized in Table 2.

1. Simulate a data set with n = 200 and σtrue = 3. Make a plot of your data with redshift on
the horizontal axis and absolute magnitude on the vertical axis. Use color coding to indicate
which SNIa are observed and plot a line to indicate the observation cut threshold (above
which SNIa are not observed).
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Table 1: R-code for simulating a dataset.

# Paramters

n <- 200 # sample size before selection effects

var.true <- 9 # intrinsic standard deviation of absolute magnitues.

# sample the redshifts

z.pts <- 1:100/100

z.prob <- (1+z.pts)^2

z.sim <- sample(z.pts, size=n, replace=TRUE, prob=z.prob)

# read in Lambda CDM model

LCDM <- read.table("LambdaCDM.txt", header=TRUE)

# Simulate absolute magnitued

M.sim <- rnorm(n, -19.3, sqrt(var.true))

# compute the apparent magnitudes, as abolsute magntiude + mu (i.e., distance modulus)

m.sim <- M.sim + LCDM[round(z.sim*100),2]

# Select if m.sim < 24

z.sel <- z.sim[m.sim<24]

M.sel <- M.sim[m.sim<24]

m.sel <- m.sim[m.sim<24]

# observed sample size

N <- length(m.sel)

2. Write a Gibbs sampler to sample from the joint posterior distribution, p(µ, σ2 | M.sel) ignoring
selection effect. How does the posterior distribution compare with the true parameter values?

3. Suppose X follows an normal distribution with mean m and standard deviation s, but we
only observe X if it is less than some threshold t. The observed variable follows a truncated
normal distribution. Use the R-functions dnorm and pnorm to write a function that computes
the density of this truncated normal distribution and the natural log of this density. An
outline of the code:

dtnorm <- function(x, mean, sd, truncation, log=FALSE){

value <- 0

if (x <= truncation){

value <- #compute the density here.

}

if(log == TRUE) value <- log(value)

value

}
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Table 2: Output from R-code for simulating a dataset.

variable name description

z.sim Simulated redshifts before selection effect
M.sim Absolute magnitudes before selection effect
m.sim Apparent magnitudes before selection effect
z.sel Simulated redshifts after selection effect
M.sel Absolute magnitudes after selection effect
m.sel Apparent magnitudes after selection effect

In this code dtnorm stands for the density of a truncated normal; x is the point at which the
(log) density is evaluated, mean is the mean of the parent (untruncated) normal, sd is the
standard deviation of the parent (untruncated) normal, truncation is the truncation point,
and log should be set to TRUE to return the natural log of the density.

4. Write a Metropolis within Gibbs sampler to sample from the joint posterior distribution,
p(µ, σ2 | M.sel) accounting for selection effect. How does the posterior distribution compare
with the true parameter values? Compare these results with your answer to Question 2.

5. Suppose there were no selection effects and data were available for the full n = 200 SNIa. Run
your Gibbs sampler from Question 2 to sample the joint posterior distribution, p(µ, σ2 | M.sim)
ignoring selection effect. (Note you are using the M.sim rather than M.sel in this analysis.)
How does the posterior distribution compare with the true parameter values? Compare these
results with your answer to Question 4.

6. You should have found the posterior variances of µ and σ2 to be larger in Question 4 than
in Question 5. Experimenting with the value of n, how large must n be for Var(µ | M.sel) to
be about the same size as Var(µ | M.sim) computed with n = 200 in Question 5? What is the
corresponding value of N?

7. In practice the apparent, not absolute magnitudes are observed. Write an MCMC sampler
for p(µ, σ2 | m.sel).

8. Bonus: In practice, the observed apparent magnitudes include observation errors. Suppose
mobs
i = mi + ei, where ei are independent mean-zero Gaussian observation errors with known

variance, τ2. Generalize the sampler you wrote for Question 7 to account for observation
errors. Use a simulation study, varying the values of τ2 and σ2 to explore how the observation
errors effect the final error bars for µ.
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