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Abstract

Clustering is widely studied in statistics and machine learning, with
applications in a variety of fields. As opposed to classical algorithms which
return a single clustering solution, Bayesian nonparametric models pro-
vide a posterior over the entire space of partitions, allowing one to assess
statistical properties, such as uncertainty on the number of clusters. How-
ever, an important problem is how to summarize the posterior; the huge
dimension of partition space and difficulties in visualizing it add to this
problem. In a Bayesian analysis, the posterior of a real-valued param-
eter of interest is often summarized by reporting a point estimate such
as the posterior mean along with 95% credible intervals to characterize
uncertainty. In this paper, we extend these ideas to develop appropriate
point estimates and credible sets to summarize the posterior of clustering
structure based on decision and information theoretic techniques.

Keywords: Mixture model; Random partition; Variation of information; Binder’s
loss.

1 Introduction

Clustering is widely studied in statistics and machine learning, with applications
in a variety of fields. Numerous models and algorithms for clustering exist, and
new studies which apply these methods to cluster new datasets or develop novel
models or algorithms are constantly being produced. Classical algorithms such
as agglomerative hierarchical clustering or the k-means algorithm (Hartigan
and Wong [1979]) are popular, but only explore a nested subset of partitions
or require specifying the number of clusters apriori. Moreover, it is difficult to
assess statistical properties, such as uncertainty on the number of clusters.

Bayesian nonparametric clustering or random partition models (Quintana
[2006]) are becoming increasingly popular, as they overcome many of the draw-
backs of classical algorithms. A Bayesian nonparametric treatment of the clus-
tering problem involves assigning a prior over the space of all possible partitions
of the data and computing the posterior of the partition given the data. Thus,
instead of returning a single clustering solution, Bayesian nonparametric models
provide a posterior over the entire space of clusterings, expressing our belief and
uncertainty in the clustering structure given the data.

However, an important problem in Bayesian cluster analysis is how to sum-
marize this posterior; indeed, often the first question one asks is what is an

1

ar
X

iv
:1

50
5.

03
33

9v
1 

 [
st

at
.M

E
] 

 1
3 

M
ay

 2
01

5



appropriate point estimate of the clustering structure based on the posterior.
Such a point estimate is useful for concisely representing the posterior and often
needed in applications. Moreover, a characterization of the uncertainty around
this point estimate would desirable in many applications. Even in studies of
Bayesian nonparametric models where the latent partition is used simply as a
tool to construct flexible models, such as in mixture models for density esti-
mation (Lo [1984]), it is important to understand the behavior of the latent
partition to improve understanding of the model. To do so, the researcher
needs to be equipped with appropriate summary tools for the posterior of the
partition.

Inference in Bayesian nonparametric partition models usually relies on Markov
chain Monte Carlo (MCMC) techniques, which produce a large number of par-
titions that represent approximate samples from the posterior. Due to the huge
dimension of the partition space and the fact that many of these partitions are
quite similar differing only in a few data points, the posterior is typically spread
out across a large number of partitions. Clearly, describing all the unique parti-
tions sampled would be infeasible, further emphasizing the need for appropriate
summary tools to communicate our findings.

In a typical Bayesian analysis, the posterior of a univariate parameter of
interest is often summarized by reporting a point estimate such as the posterior
mean, median, or mode, along with the 95% credible interval to characterize
uncertainty. In this paper, we aim to extend these ideas to develop summary
tools for the posterior on partitions. In particular, we seek to answer the two
questions: 1) What is an appropriate point estimate of the partition based on
the posterior? 2) Can we construct a 95% credible region around this point
estimate to characterize our uncertainty?

We first focus on the problem of finding an appropriate point estimate. A
simple solution is to use the posterior mode. If the likelihood of the data given
the partition and the prior of the partition are available in closed form, the
posterior mode can be estimated based on the MCMC output by the sampled
partition which maximizes the non-normalized posterior. In practice, a closed
form for the likelihood or prior is often unavailable, for example due to the pres-
ence of hyperparameters that cannot be marginalized. In general, the posterior
mode can be found by reporting the partition visited most frequently in the
sampler. Yet this approach can be problematic, as producing reliable frequency
counts is intractable due to the huge dimension of the partition space. In fact,
in many examples, the MCMC chain does not visit a partition more than once.
To overcome this, alternative search techniques have been developed to locate
the posterior mode (Heller and Ghahramani [2005], Heard et al. [2006], Dahl
[2009]). However, it is well known that the mode can be unrepresentative of the
center of a distribution.

Alternative methods have been proposed based on the posterior similarity
matrix. For a sample size of N , the elements of this N by N matrix represent
the probability that two data points are in the same cluster, which can be
estimated by the proportion of MCMC samples that cluster the two data points
together. Then, classical hierarchical or partitioning algorithms are applied
based on the similarity matrix (Medvedovic and Sivaganesan [2002], Medvedovic
et al. [2004], Rasmussen et al. [2009], Molitor et al. [2010]). These methods have
the disadvantage of being ad-hoc.

A more elegant solution is based on decision theory. In this case, one de-
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fines a loss function over clusterings. The optimal point estimate is that which
minimizes the posterior expectation of the loss function. For example, for a
real-valued parameter θ, the optimal point estimate is the posterior mean un-
der the squared error loss L2(θ, θ̂) = (θ − θ̂)2; the posterior median under the

absolute error loss L1(θ, θ̂) = |θ− θ̂|; and the posterior mode under the 0-1 loss

L0−1(θ, θ̂) = 1(θ 6= θ̂).
The question to answer then becomes what is an appropriate loss function

on the space of clusterings. The 0-1 loss function, a simple choice which leads
to the posterior mode as the point estimate, is not ideal as it does not take into
account the similarity between two clusterings. More general loss functions were
developed by Binder [1978], and the so-called Binder’s loss, which measures the
disagreements in all possible pairs of observations between the true and esti-
mated clusterings, was studied in a Bayesian nonparametric setting by Lau and
Green [2007]. Alternative loss functions considered in Bayesian nonparametrics
can be found in Quintana and Iglesias [2003] and Fritsch and Ickstadt [2009].

In this paper, we propose to use the variation of information developed by
Meilă [2007] as a loss function in a Bayesian nonparametric setting. Both the
variation of information and Binder’s loss possess the desirable properties of
being metrics on the space of partitions and being aligned with the lattice of
partitions. We provide a detailed comparison of these two metrics and discuss
the advantages of the variation of information over Binder’s loss as a loss func-
tion in Bayesian cluster analysis. Additionally, we propose a novel algorithm to
locate the optimal partition, taking advantage of the fact that both metrics are
aligned on the space of partitions.

Next, to address the problem of characterizing uncertainty around the point
estimate, we propose to construct a credible ball around the point estimate. As
both Binder’s loss and the variation of information are metrics on the partition
space, we can easily construct such a ball. Interestingly, the two metrics can
produce very different credible balls, and we discuss this in detail. In existing
literature, quantifications of uncertainty include reporting a heat map of the
estimated posterior similarity matrix. However, there is no precise quantifica-
tion of how much uncertainty is represented by the posterior similarity matrix,
and in a comparison with the 95% credible balls, we find that the uncertainty
is under-represented by the posterior similarity matrix. Finally, we provide an
algorithm to construct the credible ball and discuss ways to depict or report it.

The paper is organized as follows. Section 2 provides a review of Bayesian
nonparametric clustering and existing point estimates of the clustering structure
from a decision theoretic approach. In Section 3, we give a detailed comparison
of two loss functions, Binder’s loss and the variation of information, pointing
out advantages of the latter. The optimal point estimate under the variation of
information is derived in Section 4 and a novel algorithm to locate the optimal
partition is proposed. In Section 5, we construct credible balls around the point
estimate to characterize posterior uncertainty and discuss how to compute and
depict it. Finally, simulated and real examples are provided in Section 6.

2 Review

This section provides a review of Bayesian nonparametric clustering models and
existing point estimates of the clustering in literature.
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2.1 Bayesian nonparametric clustering

Mixture models are one of the most popular modelling tools in Bayesian non-
parametrics. The data are assumed conditionally i.i.d. with density

f(y|P ) =

∫
K(y|θ)dP (θ),

where K(y|θ) is a parametric density on the sample space with parameter θ. A
nonparametric prior is placed on the mixing measure P , and typically this prior
has discrete realizations almost surely (a.s.). In this case,

P =

∞∑
j=1

wjδθj a.s.,

where it is often assumed that the weights (wj) and atoms (θj) are independent
and the θj are i.i.d. from some base measure P0. Thus, the density is modelled
with a countably infinite mixture model

f(y|P ) =

∞∑
j=1

wjK(y|θj).

Since P is discrete a.s., this model induces a latent partitioning c of the
data where two data points belong to the same cluster if they are generated
from the same mixture component. The partition can be represented by c =
(C1, . . . , CkN ), where Cj contains the indices of data points in the jth cluster and
kN is the number of clusters in the sample of size N . Alternatively, the partition
can be represented by c = (c1, . . . , cN ), where cn = j if the nth data point is
in the jth cluster. An advantage of the Bayesian nonparametric approach is
that the number of clusters kN is determined by and can grow with the data.
Marginalizing over the random probability measure, the data y1:N is modelled
as

f(y1:N |c) =

kN∏
j=1

m(yj) =

kN∏
j=1

∫ ∏
n∈Cj

K(yn|θ)dP0(θ),

where yj = {yn}n∈Cj .
The posterior of the partition, which reflects our beliefs and uncertainty in

the clustering given the data, is simply proportional to the likelihood times the
prior

p(c|y1:N ) ∝


kN∏
j=1

m(yj)

 p(c), (1)

where the prior of the partition is obtained from the selected prior on the mixing
measure. For example, a Dirichlet process prior (Ferguson [1973]) for P with
mass parameter α corresponds to

p(c) =
Γ(α)

Γ(α+N)
αkN

kN∏
j=1

Γ(nj),
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where nj is the number of data points in cluster j. Various other priors de-
veloped in Bayesian nonparametric literature can be considered for the mixing
measure P , such as the two-parameter Poisson-Dirichlet process (Pitman and
Yor [1997]) or the normalized generalized Gamma process or more generally,
the class of Poisson-Kingman models (Pitman [2003]), the class of normalized
completely random measures, or the class of stick-breaking priors (Ishwaran and
James [2001]). See Lijoi and Prünster [2011] for an overview.

In general, the likelihood or the prior may not be available in closed form.
Moreover, there are

SN,k =
1

k!

k∑
j=0

(−1)j
(
k
j

)
(k − j)N ,

a Stirling number of the second kind, ways to partition the N data points in to
k groups and

BN =

N∑
k=1

SN,k,

a Bell number, possible partitions of the N data points. Even for small N , this
number is very large, which makes computation of the posterior intractable for
the simplest choice of prior and likelihood. Thus, MCMC techniques are typ-
ically employed, such as the marginal samplers described by Neal [2000] with
extensions in Favaro and Teh [2013] or the conditional samplers described in
Ishwaran and James [2001], Kalli et al. [2011], or Papaspiliopoulos and Roberts
[2008]. These algorithms produce approximate samples (cm)Mm=1 from the pos-
terior (1). Clearly, describing all the posterior samples is infeasible, and our aim
is to develop appropriate summary tools to characterize the posterior.

Extensions of Bayesian nonparametric mixture models are numerous and al-
low one to model increasingly complex data. These include extensions for par-
tially exchangeable data (Teh et al. [2006]), inclusion of covariates (MacEachern
[2000]), time dependent data (Griffin and Steel [2006]), and spatially dependent
data (Duan et al. [2007]) to name a few. See Müller and Quintana [2004] and
Dunson [2010] for an overview. These extensions also induce latent clustering(s)
of the observations, and the summary tools developed here are applicable for
these settings as well.

2.2 Point estimation for clustering

Firstly, we seek a point estimate of the clustering that is representative of the
posterior, which may be of direct interest to the researcher or, more generally,
important for understanding the behavior of the posterior. From decision theory,
a point estimate is obtained by specifying a loss function L(c, ĉ), which measures
the loss of estimating the true clustering c with ĉ. Since the true clustering is
unknown, the loss is averaged across all possible true clusterings, where the
loss associated to each potential true clustering is weighted by its posterior
probability. The point estimate c∗ corresponds to the estimate which minimizes
the posterior expected loss,

c∗ = argmin
ĉ

E[L(c, ĉ)|y1:N ] = argmin
ĉ

∑
c

L(c, ĉ)p(c|y1:N ).
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A simple choice for the loss function is the 0-1 loss, L0−1(c, ĉ) = 1(c 6= ĉ),
which assumes a loss of 0 if the estimate is equal to the truth and a loss of 1
otherwise. Under the 0-1 loss, the optimal point estimate is the posterior mode:

c∗ = argmax
c

p(c|y1:N ).

However, this loss function is unsatisfactory because it doesn’t take into account
similarity between two clusterings; a partition which differs from the truth in
the allocation of only one observation is penalized the same as a partition which
differs from the truth in the allocation of many observations. Moreover, it is well
known that the mode can be unrepresentative of the center of a distribution.
Thus, more general loss functions are needed.

However, constructing a more general loss is not straightforward because,
as point out by Binder [1978], the loss function should satisfy basic principles
such as invariance to permutations of the data point indices and invariance to
permutations of the cluster labels for both the true and estimated clusterings.
Binder notes that this first condition implies that the loss is a function of the
counts ni j , which count the number of data points in cluster i under c and

cluster j under ĉ for i = 1, . . . , kN and j = 1, . . . , k̂N ; the notation kN and
k̂N represents the number of clusters in c and ĉ, respectively. He explores
loss functions satisfying these principles, starting with simple functions of the
counts ni j . The so-called Binder’s loss is a quadratic function of the counts,
which for all possible pairs of observations, penalizes the two errors of allocating
two observations to different clusters when they should be in the same cluster
or allocating them to the same cluster when they should be in different clusters:

B(c, ĉ) =
∑
n<n′

l11(cn = cn′)1(ĉn 6= ĉn′) + l21(cn 6= cn′)1(ĉn = ĉn′).

If the two types of errors are penalized equally, l1 = l2 = 1, then

B(c, ĉ) =
1

2

 kN∑
i=1

n2i+ +

k̂N∑
j=1

n2+ j − 2

kN∑
i=1

k̂N∑
j=1

n2i j

 ,

where ni+ =
∑
j ni j and n+ j =

∑
i ni j . Under Binder’s loss with l1 = l2, the

optimal partition c∗ is the partition c which minimizes∑
n<n′

|1(cn = cn′)− pnn′ | ,

or equivalently, the partition c which minimizes∑
n<n′

(1(cn = cn′)− pnn′)2 , (2)

where pnn′ = P (cn = cn′ |y1:N ) is the posterior probability that two observations
n and n′ are clustered together. This loss function was first studied in Bayesian
nonparametrics by Lau and Green [2007]. We note that in earlier work Dahl
[2006] considered minimization of (2) but without the connection to Binder’s
loss and the decision theoretic approach.

6



Binder’s loss counts the total number of disagreements, D, in the
(
N
2

)
possi-

ble pairs of observations. The Rand index (Rand [1971]), a cluster comparison
criterion, is defined as the number of agreements, A, in all possible pairs divided
by the total number of possible pairs. Since D+A =

(
N
2

)
, Binder’s loss and the

Rand index, denoted R(c, ĉ), are related:

B(c, ĉ) = (1− R(c, ĉ))

(
N

2

)
,

and the point estimate obtained from minimizing the posterior expected Binder’s
loss is equivalent to the point estimate obtained from maximizing the posterior
expected Rand’s index. Motivated by this connection, Fritsch and Ickstadt
[2009] consider maximizing the adjusted Rand index, introduced by Hubert and
Arabie [1985] to correct the Rand index for chance. An alternative loss function
is explored by Quintana and Iglesias [2003] specifically for the problem of outlier
detection.

3 A comparison of the variation of information
and Binder’s loss

Meilă [2007] introduces the variation of information (VI) for cluster comparison,
which is constructed from information theory and compares the information in
two clusterings with the information shared between the two clusterings. More
formally, the VI is defined as

VI(c, ĉ) = H(c) + H(ĉ)− 2I(c, ĉ)

= −
kN∑
i=1

ni+
N

log
(ni+
N

)
−

k̂N∑
j=1

n+ j

N
log
(n+ j

N

)
− 2

kN∑
i=1

k̂N∑
j=1

ni j
N

log

(
ni jN

ni+n+ j

)
,

where log denotes log base 2. The first two terms represent the entropy of the
two clusterings, which measures the uncertainty in bits of the cluster allocation
of a unknown randomly chosen data point given a particular clustering of the
data points. The last term is the mutual information between the two clusterings
and measures the reduction in the uncertainty of the cluster allocation of a data
point in c when we are told its cluster allocation in ĉ. The VI ranges from 0
to log(N). A review of extensions of the VI to normalize or correct for chance
are discussed in Vinh et al. [2010]. However, some desirable properties of the
VI are lost under these extensions.

In this paper, we propose to use the VI as a loss function. Note that since

I(c, ĉ) = H(c) + H(ĉ)−H(c, ĉ),

we can write

VI(c, ĉ) = H(c) + H(ĉ)− 2H(c)− 2H(ĉ) + 2H(c, ĉ),

= −H(c)−H(ĉ) + 2H(c, ĉ),

=

kN∑
i=1

ni+
N

log
(ni+
N

)
+

k̂N∑
j=1

n+ j

N
log
(n+ j

N

)
− 2

kN∑
i=1

k̂N∑
j=1

ni j
N

log
(ni j
N

)
.
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{1, 2, 3, 4}

{1}{2, 3, 4} {2}{1, 3, 4} {3}{1, 2, 4} {4}{1, 2, 3} {1, 2}{3, 4} {1, 3}{2, 4} {1, 4}{2, 3}

{1}{2}{3, 4} {1}{3}{2, 4} {1}{4}{2, 3} {2}{3}{1, 4} {2}{4}{1, 3} {3}{4}{1, 2}

{1}{2}{3}{4}

Figure 1: Hasse diagram for the lattice of partitions with a sample of size N = 4.
A line is drawn from c up to ĉ when c is covered by ĉ.

We provide a detailed comparison with an N -invariant version of Binder’s loss,
defined as

B̃(c, ĉ) =
2

N2
B(c, ĉ) =

kN∑
i=1

(ni+
N

)2
+

k̂N∑
j=1

(n+ j

N

)2
− 2

kN∑
i=1

k̂N∑
j=1

(ni j
N

)2
.

Both loss functions are consideredN -invariant as they only depend onN through
the proportions ni j/N . We focus on these two loss functions as they satisfy sev-
eral desirable properties.

The first important property is that both VI and B̃ are metrics on the space
of partitions.

Property 3.1 Both VI and B̃ are metrics on the space of partitions, that is
they satisfy:

1. Non-negativity: d(c, ĉ) ≥ 0 and d(c, ĉ) = 0 if and only if c = ĉ under a
permutation of cluster labels,

2. Symmetry: d(c, ĉ) = d(ĉ, c),

3. Triangle inequality: for any c, ĉ, ̂̂c,

d(c, ĉ) ≤ d(c, ̂̂c) + d(ĉ, ̂̂c).

A proof for VI can be found in Meilă [2007]. For B̃, the proof results from
the fact that B̃ can be derived as the Hamming distance between the binary
representation of the clusterings.

The next properties involve first viewing the space of partitions as a partially
ordered set. In particular, consider the space of partitions C and the binary
relation ≤ on C defined by set containment, i.e. for c, ĉ ∈ C, c ≤ ĉ if for
all i = 1, . . . , kN , Ci ⊆ Ĉj for some j ∈ {1, . . . , k̂N}. The partition space C
equipped with ≤ is a partially ordered set, meaning that the following properties
are satisfied:

1. Reflexivity: c ≤ c,

2. Antisymmetry: if c ≤ ĉ and ĉ ≤ c then c = ĉ under a permutation of
cluster labels,
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3. Transitivity: if c ≤ ĉ and ĉ ≤ ̂̂c, then c ≤ ̂̂c.

For any c, ĉ ∈ C, c is covered by ĉ, denoted c ≺ ĉ, if c < ĉ and there is nô̂c ∈ C such that c < ̂̂c < ĉ. This covering relation is used to define the Hasse
diagram, where the elements of C are represented as nodes of a graph and a
line is drawn from c up to ĉ when c ≺ ĉ. An example of the Hasse diagram for
N = 4 is depicted in Figure 1.

The space of partitions possesses an even richer structure; it forms a lattice.
This follows from the fact that every pair of partitions has a greatest lower
bound (g.l.b.) and least upper bound (l.u.b.), where an element c ∈ C is an
upper bound for a subset S ⊆ C if s ≤ c for all s ∈ S, and c ∈ C is the
least upper bound, if it exists, for a subset S ⊆ C if c is an upper bound for S
and c ≤ c′ for all upper bounds c′ of S (a lower bound and the greatest lower
bound are similarly defined). In general, a partially ordered set satisfying these

properties forms a lattice; that is, for any c, ĉ, ̂̂c ∈ C

1. c ∧ c = c and c ∨ c = c,

2. c ∧ ĉ = ĉ ∧ c and c ∨ ĉ = ĉ ∨ c,

3. c ∧ (ĉ ∧ ̂̂c) = (c ∧ ĉ) ∧ ̂̂c and c ∨ (ĉ ∨ ̂̂c) = (c ∨ ĉ) ∨ ̂̂c,

4. c ∧ (c ∨ ĉ) = c and c ∨ (c ∧ ĉ) = c,

where the operators ∧ and ∨ are defined as c ∧ ĉ = g.l.b.(c, ĉ) and c ∨ ĉ =
l.u.b.(c, ĉ) and equality holds under a permutation of cluster labels. In this
case, the operator ∧ is called the meet and the operator ∨ is called the join.
Following the conventions of lattice theory, we will use 1 to denote the greatest
element of the lattice of partitions, i.e. the partition with every observation in
one cluster c = ({1, . . . , N}), and 0 to denote the least element of the lattice
of partitions, i.e. the partition with every observation in their own cluster
c = ({1}, . . . , {N}). See Nation [1991] for more details on lattice theory.

A desirable property is that both VI and B̃ are aligned with the lattice of
partitions. Specifically, both metrics are vertically aligned in the Hasse diagram;

if ̂̂c is connected up to ĉ and ĉ is connected up to c, then the distance between̂̂c and c is the vertical sum of the distances between ̂̂c and ĉ and between ĉ and
c (see Property 3.2). And, both metrics are horizontally aligned ; the distance
between any two partitions is the horizontal sum of the distances between each
partition and the meet of the two partitions (see Property 3.3).

Property 3.2 For both VI and B̃, if c ≥ ĉ ≥ ̂̂c, then

d(c, ̂̂c) = d(c, ĉ) + d(ĉ, ̂̂c).

Property 3.3 For both VI and B̃,

d(c, ĉ) = d(c, ĉ ∧ c) + d(ĉ, ĉ ∧ c).

Proofs can be found in the Appendix. These two properties imply that if
the Hasse diagram is stretched to reflect the distance between any partition
and 1, the distance between any two partitions can be easily determined from
the stretched Hasse diagram. Figures 2 and 3 depict the Hasse diagram for
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{1, 2, 3, 4}

{1}{2, 3, 4} {2}{1, 3, 4} {3}{1, 2, 4} {4}{1, 2, 3}
{1, 2}{3, 4} {1, 3}{2, 4} {1, 4}{2, 3}

{1}{2}{3, 4} {1}{3}{2, 4} {1}{4}{2, 3} {2}{3}{1, 4} {2}{4}{1, 3} {3}{4}{1, 2}

{1}{2}{3}{4}

0

0.811
1

1.5

2

Figure 2: Hasse diagram stretched by VI with a sample of size N = 4. Note
2 − 3

4 log(3) ≈ 0.811. From the VI streched Hasse diagram, we can determine
the distance between any two partitions. Example: if c = ({1, 2}, {3, 4}) and
ĉ = ({1}, {3}, {2, 4}), then c∧ ĉ = ({1}, {2}, {3}, {4}) and d(c, ĉ) = d(c∧ ĉ,1)−
d(c,1) + d(c ∧ ĉ, 1)− d(ĉ, 1) = 2− 1 + 2− 1.5 = 1.5.

{1, 2, 3, 4}

{1}{2, 3, 4} {2}{1, 3, 4} {3}{1, 2, 4} {4}{1, 2, 3}
{1, 2}{3, 4} {1, 3}{2, 4} {1, 4}{2, 3}

{1}{2}{3, 4} {1}{3}{2, 4} {1}{4}{2, 3} {2}{3}{1, 4} {2}{4}{1, 3} {3}{4}{1, 2}
{1}{2}{3}{4}

0

0.375

0.5

0.625

0.75

Figure 3: Hasse diagram stretched by B̃ with a sample of size N = 4. From
the B̃ streched Hasse diagram, we can determine the distance between any
two partitions. Example: if c = ({1, 2}, {3, 4}) and ĉ = ({1}, {3}, {2, 4}), then
c∧ĉ = ({1}, {2}, {3}, {4}) and d(c, ĉ) = d(c∧ĉ,1)−d(c,1)+d(c∧ĉ, 1)−d(ĉ, 1) =
0.75− 0.5 + 0.75− 0.625 = 0.375.

N = 4 in Figure 1 stretched according VI and B̃ respectively. As an example,
consider c = ({1, 2}, {3, 4}) and ĉ = ({1}, {3}, {2, 4}); their meet is c ∧ ĉ =
({1}, {2}, {3}, {4}), and the VI distance is VI(c, ĉ) = VI(c ∧ ĉ,1) − VI(c,1) +
VI(c ∧ ĉ, 1)−VI(ĉ, 1) = 2− 1 + 2− 1.5 = 1.5.

From the stretched Hasse diagram, we gain several insights into the similar-
ities and differences between the two metrics. An evident difference is the scale
of the two diagrams.

Property 3.4 A distance on partitions satisfying Properties 3.2 and 3.3 has
the property that for any two partitions c and ĉ,

d(c, ĉ) ≤ d(1,0).

Thus,

VI(c, ĉ) ≤ log(N) and B̃(c, ĉ) ≤ 1− 1

N
.
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In both cases, the bound on the distance between two clusterings depends
on the sample size N . However, the behavior of this bound is very different; for
VI, it approaches infinity as N →∞, and for B̃, it approaches one as N →∞.
As N grows, the number of total partitions BN increases drastically. Thus, it
is sensible that the bound on the metric grows as the size of the space grows.
In particular, 1 and 0 become more distant are N →∞, as there are increasing
number, BN − 2, of partitions between these two extremes; for B̃, the loss of
estimating one of these extremes with the other approaches the fixed number
one, while for VI, the loss approaches infinity.

From the stretched Hasse diagram in Figures 2 and 3, we can determine
the closest partitions to any c. For example, the closest partitions to 1 are
the partitions which split 1 into two clusters, one singleton and one containing
all other observations; and the closest partitions to ({1}, {2}, {3, 4}) are the
partition which merges the two smallest clusters ({1, 2}, {3, 4}) and the partition
which splits the cluster of size 2 ({1}, {2}, {3}, {4}).

Property 3.5 For both metrics VI and B̃, the closest partitions to a partition
c are:

• if c contains at least two clusters of size one and at least one cluster of
size two, the partitions which merge any two clusters of size one and the
partitions which split any cluster of size two.

• if c contains at least two clusters of size one and no clusters of size two,
the partitions which merge any two clusters of size one.

• if c contains at most one cluster of size one, the partitions which split the
smallest cluster of size greater than one into a singleton and a cluster with
the remaining observations of the original cluster.

This property characterizes the set of estimated partitions which are given
the smallest loss. Under both loss functions, the smallest loss of zero occurs
when the estimated partition is equal to the truth. Otherwise, the smallest
loss occurs when the estimated clustering differs from the truth by merging two
singleton clusters or splitting a cluster of size two, or, if neither is possible,
splitting the smallest cluster of size n into a singleton and a cluster of size n−1.
We further note that the loss of estimating the true clustering with a clustering
which merges two singletons or splits a cluster of size two, is 2

N and 2
N2 for VI

and B̃ respectively, which converges to 0 as N →∞ for both metrics, but at a
faster rate for B̃.

Next, we note that the Hasse diagram stretched by B̃ in Figure 3 appears
asymmetric, in the sense that 1 is more separated from the others when com-
pared to the Hasse diagram stretched by VI in Figure 2.

Property 3.6 Suppose N is divisible by k, and let ck denote a partition with
k clusters of equal size N/k.

B̃(1, ck) = 1− 1

k
>

1

k
− 1

N
= B̃(0, ck).

VI(1, ck) = log(k) ≤ log(N)− log(k) = VI(0, ck), for k ≤
√
N,

and

VI(1, ck) = log(k) ≥ log(N)− log(k) = VI(0, ck), for k ≥
√
N.
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0.811
1

1.5

2

Figure 4: Example of the VI ball around c = ({1, 2}, {3, 4}), with the rainbow
color indicating increasing distance from c. The smallest non-trivial credible
ball contains all the red clusterings, the next smallest contains the red and
orange clusterings, and so on.

{1, 2, 3, 4}

{1}{2, 3, 4} {2}{1, 3, 4} {3}{1, 2, 4} {4}{1, 2, 3}
{1,2}{3,4}{1, 3}{2, 4} {1, 4}{2, 3}

{1}{2}{3, 4} {1}{3}{2, 4} {1}{4}{2, 3} {2}{3}{1, 4} {2}{4}{1, 3} {3}{4}{1, 2}
{1}{2}{3}{4}

0

0.375

0.5

0.625

0.75

Figure 5: Example of the B̃ ball around c = ({1, 2}, {3, 4}), with the rainbow
color indicating increasing distance from c. The smallest non-trivial credible
ball contains all the red clusterings, the next smallest contains the red and
orange clusterings, and so on.

Property 3.6 reflects the asymmetry apparent in Figure 3. In particular, for
B̃, a partition with two clusters of equal size c2 will always be closer to the
extreme 0 of everyone in their own cluster than the extreme 1 of everyone in
one cluster. However, as the sample size increases, c2 becomes equally distant
between the two extremes. For all other values of k, the extreme 0 will always
be closer. This behavior is counter-intuitive for a loss function on clusterings.
VI is much more sensible in this regard. If k =

√
N , 0 and 1 are equally good

estimates of ck. For k <
√
N , ck is is better estimated by 1 and for k >

√
N , ck

is better estimated by 0; as the sample size increases, these preferences become
stronger. In particular, note that loss of estimating c2 with 1 will always be
smaller than estimating it with 0 for N > 4.

Additionally, we observe from Figure 3 that the partitions with two clusters
of sizes 1 and 3 are equally distant between the two extremes under B̃. The
following property generalizes this observation.

Property 3.7 Suppose N is an even and square integer. Then, the partitions
with two clusters of sizes n = 1

2 (N −
√
N) and N − n are equally distance from

1 and 0 under B̃.
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This property is unappealing for a loss function, as it states that the loss
of estimating a partition consisting of two clusters of sizes 1

2 (N −
√
N) and

1
2 (N +

√
N) with the partition of only one cluster or with the partition of all

singletons is the same. Intuitively, however, 1 is a better estimate. The behavior
of VI is much more reasonable, as partitions with two clusters will always be
better estimated by 1 than 0 for N > 4 and partitions with

√
N clusters of

equal size are equally distant from 0 and 1.
Finally, we note that as both VI and B̃ are metrics on the space of clusterings,

we can construct a ball around c of size ε, defined as:

Bε(c) = {ĉ ∈ C : d(c, ĉ) ≤ ε}.

Interestingly, the balls differ between the two metrics even for the simple ex-
ample with N = 4 in Figures 4 and 5, which consider a ball around c =
({1, 2}, {3, 4}). In these figures, partitions are rainbow colored by increasing
distance to c; thus, the smallest non-trivial ball, i.e. the smallest ball around c
with at least two partitions, contains all red clusterings, the next smallest ball
contains all red and orange clusterings, and so on. In general, from Property
3.5, the smallest non-trivial ball will be the same for the two metrics, which
is confirmed in the figures, as the set of red clusterings coincide. When con-
sidering the next smallest ball, differences emerge; the VI ball includes the red
clusterings and the orange clusterings 0 and 1, and the B̃ ball includes the red
clusterings and the orange clustering 0. Note that 1 is only included in the B̃
ball around c when it is expanded to include all clusterings and is considered as
distant to c as the partitions c = ({1, 3}, {2, 4}) and c = ({1, 4}, {2, 3}). In the
authors’ opinions, the VI ball more closely reflects our intuition of the closest
set of partitions to c.

4 Point estimation via the variation of informa-
tion

As detailed in the previous section, both VI and B̃ share several desirable prop-
erties including being aligned with the lattice of partitions and coinciding in the
smallest non-trivial ball around any clustering. However, in our comparison,
differences also emerged. Particularly, we find that B̃ exhibits some peculiar
asymmetries, preferring to split clusters over merging, and we find that the VI
ball more closely reflects our intuition of the neighborhood of a partition. In
light of this, we propose to use VI as loss function in Bayesian cluster analysis.
Under the VI, the optimal partition c∗ is

c∗ = argmin
ĉ

E[VI(c, ĉ)|D]

= argmin
ĉ

N∑
n=1

log(

N∑
n′=1

1(ĉn′ = ĉn))− 2

N∑
n=1

E[log(

N∑
n′=1

1(cn′ = cn, ĉn′ = ĉn))|D],

(3)

with D denoting the data. For a given ĉ, the second term in (3) can be approx-
imated based on the MCMC output. This, however, may be computationally
demanding if the number of MCMC samples is large and if (3) must be eval-
uated for a large number of ĉ. Alternatively, one can use Jensen’s inequality,
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swapping the log and expectation, to obtain a lower bound on the expected loss
which is computationally efficient to evaluate:

argmin
ĉ

N∑
n=1

log(

N∑
n′=1

1(ĉn′ = ĉn))− 2

N∑
n=1

log(

N∑
n′=1

P (cn′ = cn|D)1(ĉn′ = ĉn)).

(4)

Similar to minimization of the posterior expected Binder’s loss, minimization
of (4) only depends on the posterior through the posterior similarity matrix,
which can pre-computed based on the MCMC output.

Due to the huge dimensions of the partition space, computing (3) or (4) for
every possible ĉ is practically impossible. An simple technique to find the opti-
mal partition c∗ restricts the search space to some smaller space of partitions,
for example, the partitions visited in the MCMC chain. Alternative algorithms
have been developed in Quintana and Iglesias [2003] and Lau and Green [2007].

We propose a greedy search algorithm to locate the optimal partition c∗

based on the Hasse diagram, which can be used to for both VI and B̃. In
particular, given some partition ĉ, we consider the l closest partitions that
cover ĉ and the l closest partitions that ĉ covers. Here, the distance used to
determine the closest partitions corresponds to the selected loss of VI or B̃.
Next, the posterior expected loss is computed for all proposed partitions and
we move in the direction of minimum posterior expected loss. The algorithm
stops when no reduction in the posterior expected loss is obtained or when a
maximum number of iterations has been reached. In practice, we may initialize
the algorithm with say a particular sample of the MCMC, e.g. the last sample,
or with the MCMC sample which minimizes the posterior expected loss. The
algorithm is summarized below.

Greedy search algorithm based on the Hasse diagram:

• Initialize ĉ.

• For i = 1, . . . I

– Find the l closest partitions that cover ĉ and the l closest partitions
that ĉ covers.

– Compute E[L(c, ̂̂c)|D] for all 2l partitions and select the partition c′

with minimal E[L(c, c′)|D].

– If E[L(c, c′)|D] < E[L(c, ĉ)|D], set ĉ = c′. Otherwise, STOP.

• end

5 Credible balls of partitions

To characterize the uncertainty in the point estimate c∗, we propose to construct
a credible ball of a given credible level 1− α, α ∈ [0, 1], defined as

Bε∗(c
∗) = {c : d(c∗, c) ≤ ε∗},

where ε∗ is the smallest ε ≥ 0 such that

P (Bε(c
∗)|D) ≥ 1− α.
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The credible ball is the smallest ball around c∗ with posterior probability at
least 1 − α. It reflects the posterior uncertainty in the point estimate c∗; with
probability 1− α, we believe that the clustering is within a distance of ε∗ from
the point estimate c∗ given the data. It can be defined based on any metric on
the space of partitions, such as VI and B̃. If the smallest non-trivial ball under
VI or B̃ has posterior probability of at least 1− α, the credible balls under the
two metrics will coincide (see Property 3.5). Typically, however, they will be
different, see the discussion at the end of Section 3.

From the MCMC output, we can obtain an estimate of ε∗, and thus the
credible ball of level 1 − α. First, the distance between all MCMC samples
{cm} and c∗ is computed. For any ε ≥ 0,

P (Bε(c
∗)|D) = E[1(d(c∗, c) ≤ ε)|D] ≈ 1

M

M∑
m=1

1(d(c∗, cm) ≤ ε),

and ε∗ is the smallest ε ≥ 0 such that

1

M

M∑
m=1

1(d(c∗, cm) ≤ ε) ≥ 1− α.

To characterize the credible ball, we define the vertical and horizontal bounds
based on the credible ball. The vertical upper bounds consist of the partitions
in the credible ball with the smallest number of clusters which are most distant
from c∗. The vertical lower bounds consist of the partitions in the credible
ball with the largest number of clusters which are most distant from c∗. The
horizontal bounds consist of the partitions in the credible ball which are most
distant from c∗.

For example, suppose N = 4 and the optimal point estimate under both
VI and B̃ is ({1, 2}, {3, 4}). Further suppose that the 95% credible ball with
the VI and B̃ metric consists of the red, orange, and yellow partitions depicted
in Figures 4 and 5, respectively. For VI, the upper vertical bound is 1, the
lower vertical bound is 0, and the horizontal bounds are the yellow partitions,
i.e. those with one singleton and one cluster of size N − 1 = 3. For B̃, the
upper vertical bounds are the partitions with one singleton and one cluster of
size N − 1 = 3, the lower vertical bound is 0, and the horizontal bounds are the
yellow partitions, i.e. those with one singleton and one cluster of size N −1 = 3
and those with two singletons and one cluster of size N − 2 = 2 which are not
covered by c∗.

In practice, we define the vertical and horizontal bounds based on the par-
titions in the credible ball with positive estimated posterior probability.

In existing literature, quantification of uncertainty in the clustering struc-
ture is typically described through a the heat map of the estimated posterior
similarity matrix. However, as opposed to the credible ball of Bayesian confi-
dence level 1 − α, there is no precise quantification of how much uncertainty
is represented by the posterior similarity matrix. Moreover, in the examples of
Section 6, we find that in a comparison with the 95% credible balls, the un-
certainty is under-represented by the posterior similarity matrix. Additionally,
the credible balls have the added desirable interpretation of characterizing the
uncertainty around the point estimate c∗.
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(a) Example 1: 4 clusters
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(b) Example 2: 4 clusters

Figure 6: The data are simulated from a mixture of four normals with locations
(±2,±2)′ and colored by cluster membership. In (a) the standard deviations
of all components are equal to 1, and in (b) the standard deviations are 1 in
the first and third quadrants, 0.5 in second quadrant, and 1.5 in the fourth
quandrant.

6 Examples

We provide both simulated and real examples to compare the point estimates
from VI and Binder’s loss and describe the credible ball representing uncertainty
in the clustering estimate.

6.1 Simulated examples

Two datasets of size n = 200 are simulated from:

Xi
iid∼

4∑
j=1

1

4
N

([
(−1)b

(j−1)
2 c2

(−1)j−12

]
,

[
σ2
j 0

0 σ2
j

])
.

For the first example, σj = 1 for all components, and for the second, σj = 1
for the two components located in the first and third quadrants, σj = 0.5 in
the second quadrant, and σj = 1.5 in the fourth quadrant. The data for both
examples are depicted in Figure 6 and colored by cluster membership.

We consider a Dirichlet process (DP) mixture model:

Xi|P
iid∼
∫

N

([
µ1

µ2

]
,

[
σ2
1 0

0 σ2
2

])
dP (µ,Σ), (5)

P ∼ DP(αP0),

where µ = (µ1, µ2)′ and Σ is a diagonal matrix with diagonal elements (σ2
1 , σ

2
2).
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(a) Binder’s loss: 9 clusters
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(b) VI: 4 clusters
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(c) Modified VI: 4 clusters

Figure 7: Example 1: optimal clustering estimate with color representing cluster
membership for Binder’s loss, VI, and the modified VI.
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(a) Binder’s loss: 12 clusters
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(b) VI: 5 clusters
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(c) Modified VI: 4 clusters

Figure 8: Example 2: optimal clustering estimate with color representing cluster
membership for Binder’s loss, VI, and the modified VI.

E[B̃|D] B̃(ct, c
∗) E[VI|D] VI(ct, c

∗)

c∗ from B̃ 0.062 0.045 0.816 0.643
c∗ from VI 0.064 0.044 0.77 0.569
c∗ from mVI 0.064 0.049 0.779 0.620

Table 1: Example 1: a comparison of the optimal partition with B̃, VI, or the
modified VI in terms of expected B̃, B̃ between the optimal and true clusterings,
expected VI, and VI between the optimal and true clusterings.

E[B̃|D] B̃(ct, c
∗) E[VI|D] VI(ct, c

∗)

c∗ from B̃ 0.088 0.056 1.068 0.764
c∗ from VI 0.099 0.056 1.03 0.646
c∗ from mVI 0.099 0.062 1.033 0.648

Table 2: Example 2: a comparison of the optimal partition with B̃, VI, or the
modified VI in terms of expected B̃, B̃ between the optimal and true clusterings,
expected VI, and VI between the optimal and true clusterings.
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(a) B̃ estimate: 9 clusters
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(b) B̃ upper vertical bound:
4 clusters
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(c) B̃ lower vertical bound:
18 clusters
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(d) B̃ horizontal bounds: 8 and 11 clusters

Figure 9: Example 1: 95% credible ball with Binder’s loss around c∗ (a) repre-
sented by (b) the upper vertical bound, (c) the lower vertical bound, and (d)
the horizontal bounds, where color denotes cluster membership.

The base measure of the DP is conjugate product of normal inverse gamma
priors with parameters (µ0,i, ci, ai, bi) for i = 1, 2, i.e. P0 has density

p0(µ1, µ2, σ
2
1 , σ

2
2) ∝

2∏
i=1

√
ci
σ2
i

exp

(
− ci

2σ2
i

(µi − µ0,i)
2

)
(σ2
i )−ai−1 exp

(
− bi
σ2
i

)
.

The parameters were fixed to µ0,i = 0, ci = 1/2, ai = 2, bi = 1 for i = 1, 2. The
mass parameter α is given a Gam(1, 1) hyperprior.

A marginal Gibbs sampler is used for inference (Neal [2000]) with 10,000 iter-
ations after a burn in period of 1,000 iterations. Trace plots and autocorrelation
plots (not shown) suggest convergence.

Among partitions sampled in the MCMC, only one is visited twice and all
others are visited once in the first example, while no partitions are visited more
than once in the second. Thus, an estimate of posterior mode based on frequency
counts is not reliable.

For the first example, Figure 7 depicts the optimal partition found by the
greedy search algorithm for Binder’s loss (9 clusters), VI (4 clusters), and the
modified VI (4 clusters) where the lower bound to the expected VI in (4) is
minimized. The four true clusters are visible in all solutions; however, Binder’s
loss creates new small clusters for observations located on the border between
clusters whose cluster membership is uncertain, overestimating the number of
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(a) VI estimate: 4 clusters
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(b) VI upper vertical bound:
4 clusters
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(c) VI lower vertical bound:
16 clusters
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(d) VI horizontal bound:
11 clusters

Figure 10: Example 1: 95% credible ball with VI around c∗ (a) represented by
(b) the upper vertical bound, (c) the lower vertical bound, and (d) the horizontal
bound, where color denotes cluster membership.

clusters. As expected, the B̃ estimate and VI estimate achieve the lowest poste-
rior expected loss for B̃ and VI, respectively, but interestingly, the VI estimate
has the smallest distance from the truth for both B̃ and VI (see Table 1).

For the second example, the optimal partition found by the greedy search
algorithm for Binder’s loss (12 clusters), VI (5 clusters), and the modified VI
(4 clusters) are depicted in Figure 8 and compared in Table 2. Again, we
observe that the four main clusters are present in all three point estimates,
but Binder’s loss allocates uncertain observations on the borders to their own
clusters, overestimating the number of clusters present.

For the first example, Figures 9 and 10 represent the 95% credible ball
around the optimal partition for B̃ and VI, respectively, through the upper
vertical bound, the lower vertical bound, and the horizontal bounds, with data
points colored according to cluster membership. Figures 11 and 12 provide an
alternative visualization of the optimal partition and the bounds of the 95%
credible ball. In these figures, the optimal partition and bounds are compared
with the true partition through a color map of the N × N matrix with red
indicating two data points in the same cluster for both the true and optimal
partition; white indicating two data points in different clusters for both the true
and optimal partition; green indicating two data points in the same cluster for
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(d) B̃ lower vertical bound
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(e) B̃ horizontal bound

Figure 11: Example 1: (a) Heat map of the posterior similarity matrix. (b)
Optimal B̃ partition compared with the true partition through a color map the
N ×N matrix with red indicating two data points in the same cluster for both
the true and optimal partition; white indicating two data points in different
clusters for both the truth and optimal; green indicating two data points in
the same cluster for the truth and different clusters for the optimal; and blue
indicating two data points in the same cluster for the optimal and different
clusters for the truth. (c),(d),(e) Representation of the 95% credible ball with B̃
through a color map of the N ×N matrix comparing the bound with the truth
(only one of two horizontal bounds shown for conciseness).

the truth and different clusters for the optimal partition; and blue indicating two
data points in the same cluster for the optimal partition and different clusters
for the truth. Thus, red and white have a positive interpretation, while blue
and green have a negative interpretation. Observations have been sorted by
hierarchical clustering. Analogous plots for the second example are found in
Figures 13, 14, 15 and 16.

We observe that for the first example elements of the 95% credible ball
with positive estimated posterior probability have at least four clusters for both
metrics and at most 18 clusters for B̃ or 16 clusters for VI, while the most
distant elements contain 8 and 11 clusters for B̃ and 11 clusters for VI. For
both metrics, these bounds reallocate uncertain data points on the border or in
some cases merge or split one of the four main clusters. In the second example,
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(c) VI upper vertical bound
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(d) VI lower vertical bound
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Figure 12: Example 1: (a) Heat map of the posterior similarity matrix. (b)
Optimal VI partition compared with the true partition through a color map the
N ×N matrix with red indicating two data points in the same cluster for both
the true and optimal partition; white indicating two data points in different
clusters for both the truth and optimal; green indicating two data points in
the same cluster for the truth and different clusters for the optimal; and blue
indicating two data points in the same cluster for the optimal and different
clusters for the truth. (c),(d),(e) Representation of the 95% credible ball with
VI through a color map of the N × N matrix comparing the bound with the
truth.

the green cluster in Figure 6b is stable in all bounds, while the 95% credible ball
reflects posterior uncertainty on whether to divide the remaining observations
into 3 to 18 clusters for B̃ and 2 to 15 clusters for VI. As a consequence of the
asymmetric nature of B̃ discussed in Section 3, the number of clusters in the B̃
upper or lower vertical bound is greater than or equal to the number of clusters
in the VI upper or lower, respectively, vertical bound in all examples.

Figures 11, 12, 15, and 16 provide a comparison of uncertainty represented by
the posterior similarity matrix with the uncertainty represented by the 95% cred-
ible ball. In general, the posterior similarity matrix appears to under-represent
the uncertainty; indeed, one would conclude from the similarity matrix that
there is only uncertainty in allocation of a few data points in Example 1. More-
over, the 95% credible ball gives a precise quantification of the uncertainty.
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(a) B̃ estimate: 12 clusters
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(b) B̃ upper vertical bounds: 4 clusters
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(c) B̃ lower vertical bound:
19 clusters
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(d) B̃ horizontal bounds: 6 and 7 clusters

Figure 13: Example 2: 95% credible ball with Binder’s loss represented by (a)
the upper vertical bounds, (b) the lower vertical bound, and (c) the horizontal
bounds (only two of three horizontal bounds shown for conciseness), where color
denotes cluster membership.

Additionally, we note that for both metrics, there is greater uncertainty
around the optimal estimate in Example 2; for Example 1, the 95% credible
ball contains partitions with B̃-distance less than 0.097 or a VI-distance of less
than 0.841, while for Example 2, the 95% credible ball contains partitions that
with a B̃-distance of less than 0.188 and a VI-distance of less than 0.985.

The greedy search algorithm was performed with different starting points
and different values of l, which controls the amount of local exploration at each
iteration. We experimented starting the search at the last MCMC sample or
the MCMC sample which minimizes the criteria. The latter is clearly a better
starting point, but requires additional computation for initialization. On the
other hand, when initializing with the last sampled partition, more iterations
are typically required to locate the optimal partition in the greedy search. In
most cases, the algorithm converged to the same solution for both initializations,
depending on the choice of l. The optimal partitions reported are found via the
greedy search algorithm initialized at the MCMC sample which minimizes the
criteria with l = 200.

An advantage of the greedy search algorithm is that partitions not explored
in the MCMC algorithm can be considered; for example, in all simulated and
real examples, the B̃ estimate is not among the sampled partitions and results
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(a) VI estimate: 5 clusters
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(b) VI upper vertical bound:
3 clusters
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(c) VI lower vertical bound:
16 clusters
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(d) VI horizontal bound:
10 clusters

Figure 14: Example 2: 95% credible ball with VI represented by (a) the upper
vertical bound, (b) the lower vertical bound, and (c) the horizontal bound,
where color denotes cluster membership.

in a lower expected loss than any sampled partition. Finally, we note that the
optimal partition for VI and the modified VI are quite similar, differing in the
allocation of one data point for the first example, a handful of data points in the
second example, and no data points in the real example. However, computation
time under the modified VI is significantly reduced by at least a 600 fold decrease
in all examples.

6.2 Galaxy example

We consider an analysis of the galaxy data (Roeder [1990]), available in the
MASS package of R, which contains measurements of velocities in km/sec of 82
galaxies from a survey of the Corona Borealis region. The presence of clusters
provides evidence for voids and superclusters in the far universe.

The data are modelled with a DP mixture (5). The parameters were selected
empirically with µ0 = x̄, c = 1/2, a = 2, b = s2, where x̄ represents the sample
mean and s2 represents the sample variance. The mass parameter α is given a
Gam(1, 1) hyperprior.

With 10,000 samples after 1,000 burn in, the posterior mass is spread out
over 9,636 partitions, emphasizing the need for appropriate summary tools. In
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(c) B̃ upper vertical bound
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(d) B̃ lower vertical bound
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(e) B̃ horizontal bound

Figure 15: Example 2: (a) Heat map of the posterior similarity matrix. (b)
Optimal B̃ partition compared with the true partition through a color map the
N ×N matrix with red indicating two data points in the same cluster for both
the true and optimal partition; white indicating two data points in different
clusters for both the truth and optimal; green indicating two data points in
the same cluster for the truth and different clusters for the optimal; and blue
indicating two data points in the same cluster for the optimal and different
clusters for the truth. (c),(d),(e) Representation of the 95% credible ball with B̃
through a color map of the N ×N matrix comparing the bound with the truth
(only one of two upper bounds and one of three horizontal bounds shown for
conciseness).

Figure 17, we plot the point estimate of the partition found by the greedy search
algorithm for Binder’s loss and VI. The data values are plotted against the esti-
mated density values from the DP mixture model and colored according cluster
membership. Again, we observe that Binder’s loss prefers to place observations
with uncertain allocation into singleton clusters, with the optimal partition con-
taining 7 clusters, 4 of which are singletons, while the VI solution contains 3
clusters.

Table 3 compares the point estimates from the different criteria in terms of
the posterior expected B̃ and VI; as anticipated, the B̃ solution has the smallest
posterior expected B̃ and the VI solution has the smallest posterior expected VI.
Interestingly, the VI estimate and the optimal partition found by minimizing
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(d) VI lower vertical bound
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(e) VI horizontal bound

Figure 16: Example 2: (a) Heat map of the posterior similarity matrix. (b)
Optimal VI partition compared with the true partition through a color map the
N ×N matrix with red indicating two data points in the same cluster for both
the true and optimal partition; white indicating two data points in different
clusters for both the truth and optimal; green indicating two data points in
the same cluster for the truth and different clusters for the optimal; and blue
indicating two data points in the same cluster for the optimal and different
clusters for the truth. (c),(d),(e) Representation of the 95% credible ball with
VI through a color map of the N × N matrix comparing the bound with the
truth.

the lower bound to the posterior expected VI in (4) are equivalent, while the
latter requires significantly less computation time (a 2600 fold decrease).

The 95% VI credible ball around the represenative VI partition contains all
partitions with a VI distance less than 1.267. Figures 18 and 19 summarize
the 95% credible ball through the upper vertical, lower vertical, and horizontal
bounds. We observe a large amount of variability around the optimal partition.
With 95% posterior probability, we believe that, on one extreme, the data could
be modelled using only 2 components with a large variance for one component
to account for outliers (red cluster in Figure (18a)). On the other extreme, the
data could be further split in many, 15 to be precise, smaller clusters. Figure 19
emphasizes that the posterior similarity matrix under-represents the uncertainty
around the point estimate. Following our comparison of B̃ and VI in Section
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(a) Binder’s loss: 7 clusters
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(b) VI: 3 clusters

Figure 17: Galaxy example: optimal clustering estimate with color representing
cluster membership for Binder’s loss and VI. The optimal solution for VI and
the modified VI criteria are equivalent.
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(a) VI upper vertical bound:
2 clusters
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(b) VI lower vertical bound:
15 clusters
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(c) VI horizontal bounds:
8 clusters

Figure 18: Galaxy example: 95% credible ball with VI represented by (a) the
upper vertical bound, (b) the lower vertical bound, and (c) the horizontal bound,
where color denotes cluster membership.

E[B̃|D] E[VI|D]

c∗ from B̃ 0.218 1.014
c∗ from VI 0.237 0.939

Table 3: Galaxy example: a comparison of the optimal partition with Binder’s
loss and VI in terms of posterior expected B̃ and VI. The optimal solution for
VI and the modified VI criteria are equivalent.

3 and the results of the simulated examples in Section 6.1, only the 95% VI
credible ball is reported.
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(e) VI horizontal bound

Figure 19: Galaxy example: (a) Heat map of the posterior similarity matrix.
(b) Optimal VI partition (from the greedy search algorithm) depicted through
a color map the binary N × N matrix with red indicating two data points in
the same cluster for the optimal partition and white indicating two data points
in different clusters. (c),(d),(e) Representation of the 95% credible ball with VI
depicted through a color map of the binary N ×N matrix.

7 Discusssion

Bayesian cluster analysis provides an advantage over classical cluster analysis,
in that the Bayesian procedure returns a posterior distribution over the entire
partition space, reflecting uncertainty in the clustering structure given the data,
as opposed to returning a single solution. This allows one to assess statistical
properties of the clustering given the data. However, due to the huge dimension
of the partition space, an important problem in Bayesian cluster analysis is how
to appropriately summarize the posterior. To address this problem, we have
developed tools to obtain a point estimate of clustering based on the posterior
and describe uncertainty around this estimate via the 95% credible ball.

Obtaining a point estimate via a formal decision theory framework requires
the specification of a loss function. Previous literature focused on Binder’s
loss. In this work, we propose to use an information theoretic measure, the
variation of information, and provide a detailed comparison of the two metrics,
particularly focusing on their behavior on the lattice of partitions. We find
that Binder’s loss exhibits peculiar asymmetries, placing a smaller loss on the
partition which splits two equally sized clusters into many singletons compared
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with a larger loss on the partition which merges these two clusters. The variation
of information is more symmetric in this regard. This behavior of Binder’s loss
causes the optimal partition to overestimate the number of clusters, allocating
uncertain observations to their own cluster. In addition, we have also proposed a
novel greedy search algorithm based on the Hasse diagram to locate the optimal
partition, allowing one to explore beyond the space of partitions visited in the
MCMC chain.

To represent uncertainty around the point estimate, we construct 95% cred-
ible balls around the point estimate and depict the credible ball through the
upper vertical, lower vertical, and horizontal bounds. As opposed to the pos-
terior similarity matrix, the 95% credible ball provides a precise quantification
of the uncertainty present around the point estimate, and in examples, we find
that an analysis based on the posterior similarity matrix leads one to be over
certain in the clustering structure.

The developed posterior summary tools for Bayesian cluster analysis will
be shared through an R package ’mcclust.ext’, expanding upon the existing R
package ’mcclust’ (Fritsch [2012]), which contains tools for point estimation in
Bayesian cluster analysis and cluster comparison.

In future work, we aim to extend these ideas to Bayesian feature alloca-
tion analysis, an extension of clustering which allows observations to belong to
multiple clusters (see Griffiths and Ghahramani [2011] for an overview).
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Appendix I: Proofs

Proof of Property 3.2. First note that if c ≥ ĉ, or equivalently c ∧ ĉ = ĉ, then
for all nonzero ni j , ni j = n+ j . Thus, if c ≥ ĉ,

VI(c, ĉ) =

kN∑
i=1

ni+
N

log
(ni+
N

)
+

k̂N∑
j=1

n+ j

N
log
(n+ j

N

)
− 2

k̂N∑
j=1

n+ j

N
log
(n+ j

N

)

=

kN∑
i=1

ni+
N

log
(ni+
N

)
−

k̂N∑
j=1

n+ j

N
log
(n+ j

N

)
. (6)
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Let ni denote the number of observations in cluster i under c; n̂i denote the

number of observations in cluster i under ĉ; and ̂̂ni denote the number of ob-

servations in cluster i under ̂̂c. Then, from (6), if c ≥ ĉ ≥ ̂̂c,

VI(c, ̂̂c) =

kN∑
i=1

ni
N

log
(ni
N

)
−

̂̂
kN∑
i=1

̂̂ni
N

log

(̂̂ni
N

)

=

kN∑
i=1

ni
N

log
(ni
N

)
−

k̂N∑
i=1

n̂i
N

log

(
n̂i
N

)
+

k̂N∑
i=1

n̂i
N

log

(
n̂i
N

)
−

̂̂
kN∑
i=1

̂̂ni
N

log

(̂̂ni
N

)
= VI(c, ĉ) + VI(ĉ, ̂̂c)

For B̃ the proof is similar, since if c ≥ ĉ,

B̃(c, ĉ) =

kN∑
i=1

(ni+
N

)2
−

k̂N∑
j=1

(n+ j

N

)2
.

Proof of Property 3.3. The meet between two clusterings c and ĉ will have
at most kN · k̂N clusters with ni j data points in cluster i, j for i = 1, . . . , kN ,

j = 1, . . . , k̂N (some ni j may equal zero, resulting in less than kN · k̂N clusters).

VI(c, ĉ) =

kN∑
i=1

ni+
N

log
(ni+
N

)
+

k̂N∑
j=1

n+ j

N
log
(n+ j

N

)
− 2

kN∑
i=1

k̂N∑
j=1

ni j
N

log
(ni j
N

)

=

kN∑
i=1

ni+
N

log
(ni+
N

)
−

kN∑
i=1

k̂N∑
j=1

ni j
N

log
(ni j
N

)
+

k̂N∑
j=1

n+ j

N
log
(n+ j

N

)
−

kN∑
i=1

k̂N∑
j=1

ni j
N

log
(ni j
N

)
= VI(c, c ∧ ĉ) + VI(ĉ, c ∧ ĉ).

The last line follows from the fact that the pairs (c, c ∧ ĉ) and (ĉ, c ∧ ĉ) are
vertically aligned, see the proof of Property 3.2. The proof for B̃ is similar.

Proof of Property 3.4. First note that from Property 3.2

d(1,0) = d(1, c) + d(c, c ∧ ĉ) + d(0, c ∧ ĉ), (7)

and

d(1,0) = d(1, ĉ) + d(ĉ, c ∧ ĉ) + d(0, c ∧ ĉ). (8)

Combining (7) and (8), we have

2d(1,0) = d(1, c) + d(1, ĉ) + d(c, c ∧ ĉ) + d(ĉ, c ∧ ĉ) + 2d(0, c ∧ ĉ),

which, using Property 3.3, implies that

d(1,0) =
1

2
(d(1, c) + d(1, ĉ) + d(c, ĉ)) + d(0, c ∧ ĉ).
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Since d is a metric, the triangle inequality states that

d(c, ĉ) ≤ d(1, c) + d(1, ĉ).

Adding d(c, ĉ) to either side, we have

d(c, ĉ) ≤ 1

2
(d(1, c) + d(1, ĉ) + d(c, ĉ)) .

Thus,

d(c, ĉ) ≤1

2
(d(1, c) + d(1, ĉ) + d(c, ĉ)) + d(0, c ∧ ĉ)− d(0, c ∧ ĉ)

= d(1,0)− d(0, c ∧ ĉ) ≤ d(1,0).

The last two statements results from VI(1,0) = log(N) and B̃(1,0) = 1− 1
N .

Proof of 3.5. From Property 3.3, the distance between c and any ĉ 6= c will be
bounded below by the distance between c and their meet c ∧ ĉ,

VI(c, ĉ) ≥ VI(c, c ∧ ĉ).

If c ∧ ĉ = c, then ĉ > c, and there exists a cm such that ĉ ≥ cm � c. From
Property 3.2, VI(c, ĉ) ≥ VI(c, cm). Otherwise, c ∧ ĉ < c, and there exists a cs

such that c ∧ ĉ ≤ cs ≺ c. From Property 3.2, VI(c, c ∧ ĉ) ≥ VI(c, cs). Thus
the closest partitions to c will be among those which cover c or those which c
covers.

Let’s first consider the partitions which cover c. If cm � c, then cm is
obtained from c by merging two clusters i and j, and

VI(c, cm) =
1

N
((ni + nj) log(ni + nj)− ni log(ni)− nj log(nj)) , (9)

which is minimized when i and j correspond to the two smallest clusters in c.
Next consider the partitions which c covers. If cs ≺ c, then cs is obtained from
c by splitting a cluster i of size ni > 1 into two clusters i1, i2 of sizes ni1 and
ni2 , and

VI(c, cs) =
1

N
(ni log(ni)− ni1 log(ni1)− ni2 log(ni2)) , (10)

which is minimized when i is the smallest cluster of size ni > 1 and ni1 = 1
and ni2 = ni − 1. Thus, the closest partitions to c will be among those which
merge the two smallest clusters or split the smallest cluster i of size ni > 1 into
a singleton and a cluster of size ni − 1.

To compare (9) and (10), we first consider the case when c contains at least
two singletons. In this case, the closest partitions which cover c merge two
singletons, and (9) reduces to

1

N
(2 log(2)− 1 log(1)− 1 log(1)) =

2

N
.

Letting i be the index of the smallest cluster of size ni > 1, the closest partition
which c covers splits cluster i into a singleton and a cluster of size ni − 1, and
(10) reduces to

1

N
(ni log(ni)− (ni − 1) log(ni − 1)) .
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For ni = 2, these distances are equal, and the closest partitions to c will be
those which merge any two singletons or split any cluster of size ni = 2. For
ni > 2, the partitions which merge any two singletons are the closest.

Next, suppose that c contains at most one singleton, and let ni, nj denote
the sizes of the smallest two clusters, where ni corresponds to the size of the
smaller cluster unless a singleton is present. The closest partitions which cover
c merge any two clusters of sizes ni and nj , and (9) is

1

N
((ni + nj) log(ni + nj)− ni log(ni)− nj log(nj)) . (11)

The closest partitions which c covers split any cluster of size ni into a singleton
and a cluster of size ni − 1, (10) reduces to

1

N
(ni log(ni)− (ni − 1) log(ni − 1)) . (12)

In this case, (12) will be less than (11), and the closest partitions are those
which split the smallest cluster i into a singleton and cluster of size ni− 1. The
proof for B̃ is similar.
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